Title Characterization of human and mouse peroxiredoxin IV: Evidence for inhibition by Prx-IV of epidermal growth factor- and p53-induced reactive oxygen species
نویسندگان
چکیده
The aim of this study was to identify and characterize human and mouse Prx-IV. We identified mouse peroxiredoxin IV (Prx-IV) by virtue of sequence homology to its human ortholog previously called AOE372. Mouse PrxIV conserves an amino-terminal presequence coding for signal peptide. The amino acid sequences of mature mouse and human Prx-IV share 97.5% identity. Phylogenetic analysis demonstrates that Prx-IV is more closely related to Prx-I/-II/-III than to Prx-V/-VI. Previously, we mapped the mouse Prx-IV gene to chromosome X by analyzing two sets of multiloci genetic crosses. Here we performed further comparative analysis of mouse and human Prx-IV genomic loci. Consistent with the mouse results, human Prx-IV gene localized to chromosome Xp22.135–136, in close proximity to SAT and DXS7178. A bacterial artificial chromosome (BAC) clone containing the complete human Prx-IV locus was identified. The size of 7 exons and the sequences of the splice junctions were confirmed by PCR analysis. We conclude that mouse Prx-IV is abundantly expressed in many tissues. However, we could not detect Prx-IV in the conditioned media of NIH-3T3 and Jurkat cells. Mouse Prx-IV was specifically found in the nucleusexcluded region of cultured mouse cells. Intracellularly, overexpression of mouse Prx-IV prevented the production of reactive oxygen species induced by epidermal growth factor or p53. Taken together, mouse Prx-IV is likely a cytoplasmic or organellar peroxiredoxin involved in intracellular redox signaling. Antiox. Redox Signal. 2, 507–518.
منابع مشابه
Characterization of human and mouse peroxiredoxin IV: evidence for inhibition by Prx-IV of epidermal growth factor- and p53-induced reactive oxygen species.
The aim of this study was to identify and characterize human and mouse Prx-IV. We identified mouse peroxiredoxin IV (Prx-IV) by virtue of sequence homology to its human ortholog previously called AOE372. Mouse Prx-IV conserves an amino-terminal presequence coding for signal peptide. The amino acid sequences of mature mouse and human Prx-IV share 97.5% identity. Phylogenetic analysis demonstrate...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملInvolvement of peroxiredoxin I in protecting cells from radiation-induced death.
Peroxiredoxin I (Prx-I), a key member of the peroxiredoxin family, reduces peroxides and equivalents through the thioredoxin system. Our previous work has shown that expression of Prx-I in mammalian cells increases following ionizing radiation (IR), indicating that Prx-I actively responds to IR-induced reactive oxygen species (ROS) and suggesting that Prx-I plays an important role in protecting...
متن کاملConcerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver.
UNLABELLED Peroxiredoxins (Prxs) are peroxidases that catalyze the reduction of reactive oxygen species (ROS). The active site cysteine residue of members of the 2-Cys Prx subgroup (Prx I to IV) of Prxs is hyperoxidized to cysteine sulfinic acid (Cys-SO(2) ) during catalysis with concomitant loss of peroxidase activity. Reactivation of the hyperoxidized Prx is catalyzed by sulfiredoxin (Srx). E...
متن کاملPeroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence
Peroxiredoxin I (Prx I) plays an important role as a reactive oxygen species (ROS) scavenger in protecting and maintaining cellular homeostasis; however, the underlying mechanisms are not well understood. Here, we identified a critical role of Prx I in protecting cells against ROS-mediated cellular senescence by suppression of p16INK4a expression. Compared to wild-type mouse embryonic fibroblas...
متن کامل